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Abstract— We present a novel approach for traffic forecasting
in urban traffic scenarios using a combination of spectral
graph analysis and deep learning. We predict both the low-
level information (future trajectories) as well as the high-level
information (road-agent behavior) from the extracted trajectory
of each road-agent. Our formulation represents the proximity
between the road agents using a weighted dynamic geometric
graph (DGG). We use a two-stream graph-LSTM network to
perform traffic forecasting using these weighted DGGs. The first
stream predicts the spatial coordinates of road-agents, while
the second stream predicts whether a road-agent is going to
exhibit overspeeding, underspeeding, or neutral behavior by
modeling spatial interactions between road-agents. Additionally,
we propose a new regularization algorithm based on spectral
clustering to reduce the error margin in long-term prediction
(3-5 seconds) and improve the accuracy of the predicted
trajectories. Moreover, we prove a theoretical upper bound
on the regularized prediction error. We evaluate our approach
on the Argoverse, Lyft, Apolloscape, and NGSIM datasets and
highlight the benefits over prior trajectory prediction methods.
In practice, our approach reduces the average prediction error
by more than 75% over prior algorithms and achieves a
weighted average accuracy of 91.2% for behavior prediction.
Additionally, our spectral regularization improves long-term
prediction by up to 70%.

I. INTRODUCTION

Autonomous driving is an active area of research and
includes many issues related to navigation [1], trajectory pre-
diction [2], and behavior understanding [3], [4]. Trajectory
prediction is the problem of predicting the short-term (1-
3 seconds) and long-term (3-5 seconds) spatial coordinates
of various road-agents such as cars, buses, pedestrians,
rickshaws, and even animals, etc. Accurate trajectory pre-
diction is crucial for safe navigation. Furthermore, road-
agents have different dynamic behaviors that may correspond
to aggressive or conservative driving styles [5], [6], [7].
While humans can very quickly predict different road-agent
behaviors commonly observed in traffic, current autonomous
vehicles (AVs) are unable to perform efficient navigation
in dense and heterogeneous traffic due to their inability to
recognize road-agent behaviors.

While there has been extensive progress in trajectory pre-
diction [2], [8], [9], there has been significantly less research
in behavior prediction. The advantage of knowing if a neigh-
boring road-agent is going to overtake another agent or if a
road-agent in front is going to brake suddenly is useful for
safe navigation. Furthermore, behavior prediction is crucial
for making autonomous vehicles socially aware, as opposed
to their inherent conservative behavior [10], [11], [12] that

Fig. 1: Trajectory and Behavior Prediction: We predict the long-
term (3-5 seconds) trajectories of road-agents, as well as their
behavior (e.g. overspeeding, underspeeding, etc.), in urban traffic
scenes. Our approach represents the spatial coordinates of road-
agents (colored points in the image) as vertices of a DGG to
improve long-term prediction using a new regularization method.

poses new risks in terms of low efficiency and uncomfortable
traveling experiences [13].

Furthermore, a major challenge in traffic forecasting is
ensuring accurate long-term prediction (3-5 seconds). As the
prediction horizon increases, the temporal correlations in the
data between current and previous time-steps grow weaker,
which increases the error-margin of long-term prediction
([14], cf. Figure 4 in [8], [2], Figure 3 in [15]). Some
approaches have been developed to reduce the long-term
error-margin for trajectory forecasting [14], but they assume
knowledge of high-order, non-linear traffic dynamics.

a) Main Contributions: We present an algorithm for
traffic forecasting that disjointedly predicts trajectories as
well as road-agent behavior using two separate streams. We
represent the inter-road-agent interactions in the traffic using
weighted dynamic geometric graphs (DGGs) [16], where the
vertices represent the road-agents, and the weighted edges
are a function of the proximity between the road-agents. Our
approach makes no assumptions about the size and shape of
the road-agents. Our main contributions include:

1) A two-stream graph-LSTM network for traffic forecast-
ing in urban traffic. The first stream is a conventional
LSTM encoder-decoder network that does not account
for neighbor vehicles. It is used to predict the spatial co-
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ordinates of the future trajectory. We propose a second
stream that predicts the eigenvectors of future DGGs,
which serve the dual purpose of behavior prediction as
well as regularizing the first stream.

2) To reduce the error of long-term predictions, we propose
a new regularization algorithm for sequence prediction
models called spectral cluster regularization.

3) We derive a theoretical upper bound on the prediction
error of the regularized forecasting algorithm in the
order of O(

√
Nδmax), where N is the number of

road-agents and δmax value corresponds to the distance
between the two closest road-agents.

4) We present a rule-based behavior prediction algo-
rithm to forecast whether a road-agent is overspeeding
(aggressive), underspeeding (conservative), or neutral,
based on the traffic behavior classification in psychology
literature [17], [18].

We evaluate our approach on four large-scale urban driving
datasets – NGSIM, Argoverse, Lyft, and Apolloscape. We
also perform an exhaustive comparison with the SOTA
trajectory prediction methods and report an average RMSE
(root mean square error) reduction of at least 75% with
respect to the next best method. We also achieved a weighted
average accuracy of 91.2% for behavior prediction. Our
regularization algorithm improves long-term prediction by
up to 70%.

II. RELATED WORK

Here, we discuss prior work in trajectory prediction, road-
agent behavior prediction, and traffic forecasting.

A. Trajectory Prediction

Trajectory prediction is a well-known problem in statis-
tics [19], signal processing [20], and controls and systems
engineering [21]. These approaches, however, rely on the
knowledge of certain parameters that may not be readily
available in traffic videos. In such instances, data-driven
methods such as deep learning have become the SOTA for
designing trajectory prediction algorithms.

There is some research on trajectory prediction. Deo et
al. [8] combined LSTMs with Convolutional Neural Net-
works (CNNs) to predict the trajectories of vehicles on
sparse U.S. highways. Chandra et al. [2], [9] proposed
algorithms to predict trajectories in urban traffic with high
density and heterogeneity. For traffic scenarios with mod-
erate density and heterogeneity, Ma et al. [22] proposed
a method based on reciprocal velocity obstacles. Some
additional deep learning-based trajectory prediction methods
include [23], [24]. However, these methods only capture
road-agent interactions inside a local grid, whereas graph-
based approaches such as GRIP [15] for trajectory prediction
of road-agents and [25], [26], [27], [28] for traffic density
prediction consider all interactions independent of local
neighborhood restrictions. Our graph representation differs
from that of GRIP by storing the graphs of previous time-
steps (III-B). Using our representations, we propose a novel
behavior prediction algorithm (IV-C). Additionally, unlike

other trajectory prediction methods in the literature, we
propose a new Spectral Regularization-based loss function
(IV-D) that automatically corrects and reduces long-term
errors. This is a novel improvement over all prior prediction
methods that do not handle long-term errors.

B. Socially-Aware Autonomous Driving

Current autonomous vehicles lack social awareness due to
their inherent conservative behavior [10], [11], [12]. Overly
conservative behavior present new risks in terms of low ef-
ficiency and uncomfortable traveling experiences [13]. Real-
world examples of problems caused by AVs that are not
socially adaptable can be seen in this video∗. The notion
of using driver behavior prediction to make the AVs socially
aware is receiving attention [11].

Current driving behavior modeling methods are limited
to traffic psychology studies where predictions for driving
behavior are made offline, based on either driver responses
to questionnaires or data collected over a period of time. Such
approaches are not suitable for online behavior prediction. In
the following section, we review some of these approaches.
In contrast, our behavior prediction algorithm is the first
computationally online approach that does not depend on
offline data and manually tunable parameters.

C. Road-Agent Behavior Prediction

Many studies have been performed behavior modeling
by identifying factors that contribute to different driver
behaviors classes such as aggressive, conservative, or mod-
erate driving. These factors can be broadly categorized into
four categories. The first category of factors that indicate
road-agent behavior is driver-related. These include char-
acteristics of drivers such as age, gender, blood pressure,
personality, occupation, hearing, and so on [17], [29], [30].
The second category corresponds to environmental factors
such as weather or traffic conditions [31], [32]. The third
category refers to psychological aspects that affect driving
styles. These could include drunk driving, driving under the
influence, state of fatigue, and so on [33], [34]. The final
category of factors contributing to driving behavior are ve-
hicular factors such as positions, acceleration, speed, throttle
responses, steering wheel measurements, lane changes, and
brake pressure [35], [36], [37], [38], [39], [40], [3].

A recent data-driven behavior prediction approach [3]
also models traffic through graphs. The method predicts the
driving behavior by training a neural network on the eigen-
vectors of the DGGs using supervised machine learning. The
proposed behavior prediction algorithm in this paper extends
the approach in [3] by predicting sequences of eigenvectors
for future time-steps. Apart from behavior modeling, several
methods have used machine learning to predict the intent of
road-agents [41], [42].

∗https://www.youtube.com/watch?v=Rm8aPR0aMDE
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Fig. 2: Network Architecture: We show the trajectory and behavior prediction for the ith road-agent (red circle in the DGGs). The input
consists of the spatial coordinates over the past τ seconds as well as the eigenvectors (green rectangles, each shade of green represents the
index of the eigenvectors) of the DGGs corresponding to the first τ DGGs. We perform spectral clustering on the predicted eigenvectors
from the second stream to regularize the original loss function and perform back-propagation on the new loss function to improve long-term
prediction.

III. BACKGROUND AND OVERVIEW

In this section, we define the problem statement and give
a brief overview of spectral Dynamic Geometric Graphs
(DGGs) in the context of road-agents.

A. Problem Statement

We first present a definition of a vehicle trajectory:

Definition III.1. Trajectory: The trajectory for the ith road
agent is defined as a sequence Ψi(a, b) ∈ {R2}, where
Ψi(a, b) =

{
[xt, yt]

>| t ∈ [a, b]
}

. [x, y] ∈ R2 denotes the
spatial coordinates of the road-agent in meters according to
the world coordinate frame and t denotes the time instance.

We define traffic forecasting as solving the following two
problem statements, simultaneously, but separately using two
separate streams.

Problem III.1. Trajectory Prediction: In a traffic video
with N road agents, given the trajectory Ψi(0, τ), predict
Ψi(τ

+, T ) for each road-agent vi, i ∈ [0, N ].

Problem III.2. Behavior Prediction: In a traffic video
with N road agents, given the trajectory, Ψi(0, τ), predict
a label from the following set, { Overspeeding, Neutral,
Underspeeding} for each road-agent vi, i ∈ [0, N ].

B. Weighted Dynamic Geometric Graphs (DGGs)

We assume that the trajectories of all the vehicles in the
video are provided to us as the input. Given this input, we
first construct a DGG [16] at each time-step. In a DGG, the
vehicles represent the vertices and the edge weights are a
function of the euclidean distance between the vertices. This
function [43] is given by,

f(vi, vj) = e−d(vi,vj) (1)

where vi and vj are the ith and jth vertices and d is the
euclidean distance function.

We represent traffic at each time instance using a DGG G
of size N×N , with the spatial coordinates of the road-agent

representing the set of vertices V = {v1, v2, . . . , vn} and a
set of undirected, weighted edges, E . Two road-agents are
said to be connected through an edge if d(vi, vj) < µ, where
d(vi, vj) represents the Euclidean distance between the road-
agents and µ is a heuristically chosen threshold parameter.
In our experiments, we choose µ = 10 meters, taking into
account the typical size of road-agents and the width of the
road.

For a DGG, G, we define the symmetrical adjacency
matrix, A ∈ RN×N as,

A(i, j) =

{
e−d(vi,vj) if d(vi, vj) < µ, i 6= j ,

0 otherwise.
(2)

Equation 1 denotes the interactions between any two road-
agents, vi and vj . This implies that road-agents at a greater
distance are assigned a lower weight, while road-agents in
close proximity are assigned a higher weight. This follows
the intuition that each road-agent needs to pay more attention
to nearby agents than those farther away to avoid collisions.

For the adjacency matrix A at each time instance, the
corresponding degree matrix D ∈ RN×N is a diagonal
matrix with main diagonal D(i, i) =

∑N
j=1A(i, j) and 0

otherwise. The unnormalized Laplacian matrix L = D − A
of the graph is defined as the symmetric matrix,

L(i, j) =


D(i, i) if i = j,

−e−d(vi,vj) if d(vi, vj) < µ,

0 otherwise.
(3)

The Laplacian matrix for each time-step is correlated with
the Laplacian matrices for all previous time-steps. Let the
Laplacian matrix at a time instance t be denoted as Lt. Then,
the laplacian matrix for the next time-step, Lt+1 is given by
the following update,

Lt+1 =

[
Lt 0

0 1

]
+ δδ>, (4)

where δδ> is a perturbation matrix represented by an outer



product of rank 2. Here, δ ∈ R(N+1)×2 is a sparse matrix
‖δ‖0 � N , where N represents the total number of road-
agents at time-step t. The presence of a non-zero entry in
the jth row of δ implies that the jth road-agent has observed a
new neighbor, that has now been added to the current DGG.
During training time, the size of Lt is fixed for all time t and
is initialized as a zero matrix of size NxN , where N is max
number of agents (different N is used for different datasets).
For instance, N = 270 is used for Lyft Level 5 dataset. At
current time t, if the N < 270, the zeros in Lt will simply
be updated with new values. Once N = 270, Lt is reset
to zero and the process repeats. During test time, trained
models for stream 1 predict trajectories based only on past
trajectories; these models for stream 1 do not use graphs.
Trained model for stream 2, however, generate traffic-graphs
in realtime for behavior prediction at test time. The matrix
U ∈ Rn×k := {uj ∈ Rn|j = 1 . . . k} of eigenvectors of L
is called the spectrum of L, and can be efficiently computed
using eigenvalue algorithms.

IV. TRAJECTORY AND BEHAVIOR FORECASTING

The overall flow of the approach is as follows:
1) Our input consists of the spatial coordinates over the

past τ seconds as well as the eigenvectors of the DGGs
corresponding to the first τ DGGs.

2) Solving Problem III.1: The first stream accepts the
spatial coordinates and uses an LSTM-based sequence
model [44] to predict Ψi(τ

+, T ) for each vi, i ∈ [0, N ],
where τ+ = τ + 1.

3) Solving Problem III.2: The second stream accepts the
eigenvectors of the input DGGs and predicts the eigen-
vectors corresponding to the DGGs for the next τ
seconds. The predicted eigenvectors form the input to
the behavior prediction algorithm in Section IV-C to
assign a behavior label to the road-agent.

4) Stream 2 is used to regularize stream 1 using a new
regularization algorithm presented in Section IV-D. We
derive the upper bound on the prediction error of the
regularized forecasting algorithm in Section V.

A. Network Overview

We present an overview of our approach in Figure 2 and
defer the technical implementation details of our network
to the supplementary material. Our approach consists of two
parallel LSTM networks (or streams) that operate separately.

Stream 1: The first stream is an LSTM-based encoder-
decoder network [44] (yellow layer in Figure 2). The input
consists of the trajectory history, Ψi(0, τ) and output consists
of Ψi(τ

+, T ) for each road-agent vi, i ∈ [0, N ].
Stream 2: The second stream is also an LSTM-based

encoder-decoder network (blue layer in Figure 2). To prepare
the input to this stream, we first form a sequence of DGGs,
{Gt| t ∈ [0, τ ]} for each time instance of traffic until time
τ . For each DGG, Gt, we first compute its corresponding
Laplacian matrix, Lt and use SOTA eigenvalue algorithms to
obtain the spectrum, Ut consisting of the top k eigenvectors
of length n. We form k different sequences, {Sj | j ∈ [0, k]},

where each Sj = {uj} is the set containing the jth eigen-
vector from each Ut corresponding to the tth time-step, with
|Sj | = τ .

The second stream then accepts a sequence, Sj , as input
to predict the jth eigenvectors for the next T − τ seconds.
This is repeated for each Sj . The resulting sequence of
spectrums, {Ut| t ∈ [τ+, T ]} are used to reconstruct the
sequence, {Lt| t ∈ [τ+, T ]}, which is then used to assign
a behavior label to a road-agent, as explained below.

B. Trajectory Prediction

The first stream is used to solve Problem III.1. We clarify
at this point that stream 1 does not take into account road-
agent interactions. We use spectral clustering (discussed later
in Section IV-D) to model these interactions. It is important
to further clarify that the trajectories predicted from stream
1 are not affected by the behavior prediction algorithm
(explained in the next Section).

C. Behavior Prediction Algorithm

We define a rule-based behavior algorithm (blue block
in Figure 2) to solve Problem III.2. This is largely due to
the fact that most data-driven behavior prediction approaches
require large, well-annotated datasets that contain behavior
labels. Our algorithm is based on the predicted eigenvectors
of the DGGs of the next τ seconds.

The degree of ith road-agent, (θi ≤ n), can be computed
from the diagonal elements of the Laplacian matrix Lt.
θi measures the total number of distinct neighbors with
which road-agent vi has shared an edge connection until
time t. As Lt is formed by simply adding a row and
column to Lt−1, the degree of each road-agent monotonically
increases. Let the rate of increase of θi be denoted as θ

′

i.
Intuitively, an aggressively overspeeding vehicle will observe
new neighbors at a faster rate as compared to a road-agent
driving at a uniform speed. Conversely, a conservative road-
agent that is often underspeeding at unconventional spots
such as green light intersections (Figure 1) will observe new
neighbors very slowly. This intuition is formalized by noting
the change in θi across time-steps. In order to make sure
that slower vehicles (conservative) did not mistakenly mark
faster vehicles as new agents, we set a condition where an
observed vehicle is marked as ‘new’ if and only if the speed
of the observed vehicle is less than the active vehicle (or
ego-vehicle). To predict the behavior of the ith road-agent,
we follow the following steps:

1) Form the set of predicted spectrums from stream 2,
{Ut| t ∈ [τ+, T ]}. We compute the eigenvalue matrix,
Λ, of Lt by applying theorem 5.6 of [45] to Lt−1. We
explain the exact procedure in the supplemental version.

2) For each Ut ∈ U , compute Lt = UtΛU
>
t .

3) θi = ith element of diag(Lt), where “diag” is the
diagonal matrix operator.

4) θ
′

i = ∆θi
∆t .

where Λ is the eigenvalue matrix of Lt. Based on heuris-
tically pre-determined threshold parameters λ1 and λ2, we
define the following rules to assign the final behavior label:



Overspeeding (θ
′
> λ1), Neutral (λ2 ≤ θ

′ ≤ λ1), and
Underspeeding (θ

′
< λ2).

Note that since human behavior does not change instantly
at each time-step, our approach predicts the behavior over
time periods spanning several frames.

D. Spectral Clustering Regularization

The original loss function of stream 1 for the ith road-agent
in an LSTM network is given by,

Fi = −
∑T
t=1 logPr(xt+1|µt, σt, ρt) (5)

Our goal is to optimize the parameters, µ∗t , σ
∗
t , that minimize

equation 5. Then, the next spatial coordinate is sampled
from a search space defined by N (µ∗t , σ

∗
t ). The resulting

optimization forces µt, σt to stay close to the next spatial
coordinate. However, in general trajectory prediction models,
the predicted trajectory diverges gradually from the ground-
truth, causing the error-margin to monotonically increase as
the length of the prediction horizon increases ([14], cf. Figure
4 in [8], [2], Figure 3 in [15]). The reason for this may be that
while equation 5 ensures that µt, σt stays close to the next
spatial coordinate, it does not, however, guarantee the same
for x̂t+1 ∼ N (µt, σt). Our solution to this problem involves
regularizing equation 5 by adding appropriate constraints on
the parameters, µt, σt, such that sampled coordinates from
N (µ∗t , σ

∗
t ) are close to the ground-truth trajectory.

We assume the ground-truth trajectory of a road-agent to
be equivalent to their “preferred” trajectory, which is defined
as the trajectory a road-agent would have taken in the absence
of other dynamic road-agents. Preferred trajectories can be
obtained by minimizing the Dirichlet energy of the DGG,
which in turn can be achieved through spectral clustering on
the road-agents [46]. Our regularization algorithm (shown in
the yellow arrow in Figure 2) is summarized below. For each
road-agent, vi:

1) The second stream computes the spectrum sequence,
{UT+1, . . . , UT+τ}.

2) For each U , perform spectral clustering [47] on the
eigenvector corresponding to the second smallest eigen-
value.

3) Compute cluster centers from the clusters obtained in
the previous step.

4) Identify the cluster to which vi belongs and retrieve the
cluster center, µc and deviation, σc.

Then for each road-agent, vi, the regularized loss function,
F reg
i , for stream 1 is given by,

∑T
t=1

(
− logPr(ŷt+1|µt, σt, ρt

)
+ b1‖µt − µc‖2 + b2‖σt − σc‖2 (6)

where b1 = b2 = 0.5 are regularization constants. The reg-
ularized loss function is used to backpropagate the weights
corresponding to µt in stream 1. Note that F reg

i resembles
a Gaussian kernel. This makes sense as the Gaussian kernel
models the Euclidean distance non-linearly – greater the Eu-
clidean distance, smaller the Gaussian kernel value and vice
versa. This behavior is similarly captured by Equation 1).

Furthermore, we can use Equation 6 to predict multiple
modes[8] by computing maneuver probabilities using µ, σ
following the approach in Section 4.3 of [8].

V. UPPER BOUND FOR PREDICTION ERROR

In this section, we derive an upper bound on the prediction
error, φj , of the first stream as a consequence of spectral
regularization. We present our main result as follows,

Theorem V.1. φj ≤ ‖δtδ>t ‖2
min(λj ,Λ) , where min(λj ,Λ) denotes

the minimum distance between λj and λk ∈ Λ \ λj .

Proof. At time instance t, the Laplacian matrix, Lt, its block

form,
[
Lt 0

0 1

]
, denoted as block(Lt), and the laplacian ma-

trix for the next time-step, Lt+1 are described by Equation 4.
We compute the eigenvalue matrix, Λ, of Lt by applying
theorem 5.6 of [45] to Lt−1.

LSTMs make accurate sequence predictions if elements
of the sequence are correlated across time, as opposed
to being generated randomly. In a general sequence of
eigenvectors, the eigenvectors may not be correlated across
time. Consequently, it is difficult for LSTM networks to
predict the sequence of eigenvectors, U accurately. This may
adversely affect the behavior prediction algorithm described
in Section IV-C. Our goal is now to show there exist a
correlation between Laplacian matrices across time-steps
and that this correlation is lower-bounded, that is, there
exist sufficient correlation for accurate sequence modeling
of eigenvectors.

Proving a lower-bound for the correlation is equivalent
to proving an upper-bound for the noise, or error distance,
between the jth eigenvectors of Lt and Lt+1. We denote
this error distance through the angle φj . From Theorem 5.4
of [45], the numerator of bound corresponds to the frobenius
norm of the error between Lt and Lt+1. In our case, the
update to the Laplacian matrix is given by Equation 4 where
the error matrix is δδ>.

In Theorem V.1, φj � 1 and δ is defined in equation 4.
λj represents the jth eigenvalue and Λ represents all the
eigenvalues of Lt. If the maximum component of δt is
δmax, then φj = O(

√
Nδmax). Theorem V.1 shows that

in a sequence of jth eigenvectors, the maximum angular
difference between successive eigenvectors is bounded by
O(
√
Nδmax). By setting N = 270 (number of road-agents

in Lyft), and δmax := e−3 = 0.049 (width of a lane), we
observe a theoretical upper bound of 0.8 meters. A smaller
value of φj indicates a greater similarity between successive
eigenvectors, thereby implying a greater correlation in the
sequence of eigenvectors. This allows sequence prediction
models to learn future eigenvectors efficiently.

An alternative approach to computing the spectrums
{UT+1, . . . , UT+τ} is to first form traffic-graphs from the
predicted trajectory given as the output from the stream 1.
After obtaining the corresponding Laplacian matrices for
these traffic-graphs, standard eigenvalue algorithms can be
used to compute the spectrum sequence. This is, however,



a relatively sub-optimal approach as in this case, φ =
O(NLmax), with Lmax � δmax.

VI. EXPERIMENTS AND RESULTS

We begin by listing the datasets used in our approach
in Section VI-A. We list the evaluation metrics used and
methods compared within Section VI-B. We analyze the
main results and discuss the results of comparison methods
and ablation studies of our approach in Section VI-C. In
Section VI-D, we analyse the theoretical upper bound. We
present an ablation analysis of the radius parameter µ in
Section VI-F. We make all the implementation and training
details available in the supplementary material.

A. Datasets

We use the NGSIM [48], Lyft Level 5 [49], Argoverse Mo-
tion Forecasting [50], and the Apolloscape Trajectory [22]
datasets for evaluation. These are large-scale urban trajectory
prediction datasets for autonomous driving. We give a brief
description of all the datasets in the supplemental version.
Level 5 Lyft: The LYFT Level 5 dataset contains 180 videos
of traffic in Palo Alto, California, U.S. Each video consists
of 126 frames covering a duration of 20 seconds. A single
traffic video consists of around 300 distinct road-agents. The
data format is similar to the nuScenes format [51].
Argoverse Motion Forecasting: Argoverse motion fore-
casting data consists of 324,557 video segments of 5 seconds
each. The total video length is 320 hours. The dataset
contains traffic videos recorded in Miami (204 kilometers)
and Pittsburgh (6 kilometers). The format of the data includes
the timestamp, road-agent I.D., road-agent type, the spatial
coordinates, and the location.
ApolloScape Trajectory: The ApolloScape trajectory
dataset consists of 53 minutes of training sequences and 50
minutes of testing sequences captured at two fps. The dataset
has been collected in Beijing, China. The format of the data
includes the frame I.D., road-agent I.D., road-agent type, 3D
spatial coordinates, heading angle and height, length, and
width of the object.
NGSIM: While the previous three datasets are moderately
dense datasets of urban traffic videos, the NGSIM dataset
contains videos of sparse highway traffic. Each segment in
the dataset is 45 minutes. In addition to trajectory informa-
tion, the dataset also contains lane annotations for three lanes
(left, center, right).

It is worth mentioning that there are several other datasets
related to autonomous driving, for instance, the TRAF [2]
and the Honda Driving Dataset [52]. However, TRAF is not
relevant for our current work as the number of traffic videos
in TRAF is less than 50, and the annotations consist of pixel
coordinates instead of meters in the world coordinate system.

B. Evaluation Metrics and Methods

1) Metrics: For trajectory prediction, we use the stan-
dard metrics followed by prior trajectory prediction ap-
proaches [53], [54], [2], [8], [9].

1) Average Displacement Error (ADE): The root mean
square error (RMSE) of all the predicted positions and
real positions during the prediction window.

2) Final Displacement Error (FDE): The RMSE distance
between the final predicted positions at the end of the
predicted trajectory and the corresponding true location.

For behavior prediction, we report a weighted classifica-
tion accuracy (W.A.) over the 3 class labels: {overspeeding,
neutral, underspeeding}.

2) Methods: We compare our approach with SOTA tra-
jectory prediction approaches for road-agents. Our definition
of SOTA is not limited to ADE/FDE values. We consider
SOTA additionally with respect to the deep learning archi-
tecture used in a different approach. Combined, our basis for
selecting SOTA methods not only evaluates the ADE/FDE
scores but also evaluates the benefits of using the two-stream
network versus other deep learning-based architectures.
• Enc-Dec: This method is based on a standard encoder-

decoder architecture similar to the Seq2Seq model [55].
• Deo et al. [8] (CS-LSTM): This method combines

CNNs with LSTMs to perform trajectory prediction on
U.S. highways.

• Chandra et al. [2] (TraPHic): This approach also uses
a CNN + LSTM approach along with spatial attention-
based pooling to perform trajectory prediction of road-
agents in dense and heterogeneous traffic.

• Gupta et al. [54] (Social-GAN): This GAN-based trajec-
tory prediction approach is originally trained on pedes-
trian crowd datasets. The method uses the encoder-
decoder architecture to act as the generator and trains
an additional encoder as the discriminator.

• Li et al. [15] (GRIP): This is a graph-based trajec-
tory prediction approach that replaces standard CNNs
with graph convolutions and combines GCNs with an
encoder-decoder framework.

We use the publicly available implementations for CS-
LSTM, TraPHic, and Social-GAN, and train the entire model
on all three datasets. We performed hyper-parameter tuning
on all three methods and reported the best results. Moreover,
we compare with the officially published results for GRIP as
reported on the NGSIM [15] and the Apolloscape datasets†.

C. Analysis and Discussion

We compare the ADE and FDE scores of our predicted
trajectories with prior methods in Table I and show qualita-
tive results in the supplementary material. We compare with
several SOTA trajectory prediction methods and reduce the
average RMSE by at least 75% with respect to the next best
method (GRIP).

Ablation Study of Stream 1 vs. Both Streams: To
highlight the benefit of the spectral cluster regularization
on long-term prediction, we remove the second stream and
only train the LSTM encoder-decoder model (Stream 1) with
the original loss function (equation 5). Our results (Table I,
last four columns) show that regularizing stream 1 reduces

†http://apolloscape.auto/leader_board.html

http://apolloscape.auto/leader_board.html


TABLE I: Main Results: We report the Average Displacement Error (ADE) and Final Displacement Error (FDE) for prior road-agent
trajectory prediction methods in meters (m). Lower scores are better and bold indicates the SOTA. Revisions: Green colored cells indicate
revised results for our method while blue colored cells indicates revised results for the original implementations GRIP and Social-GAN
method.

Dataset (Pred. Len.) Comaprison Methods Ablation Our Approach

Enc-Dec CS-LSTM TraPHic Social-GAN GRIP Stream 1 Both Streams
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

Lyft (5 sec.) - - 4.423 8.640 5.031 9.882 7.860 14.340 - - 5.77 11.20 2.65 2.99
Argoverse (5 sec.) - - 1.050 3.085 1.039 3.079 3.610 5.390 - - 2.40 3.09 0.99 1.87
Apolloscape (3 sec.) 2.24 8.25 2.144 11.699 1.283 11.674 3.980 6.750 1.25 2.34 2.14 9.19 1.12 2.05
NGSIM (5 sec.) 6.86 10.02 7.250 10.050 5.630 9.910 5.650 10.290 1.61 3.16 1.31 2.98 0.40 1.08

(a) Lyft Ground-Truthwith λ=0.00015. (b) Lyft Behavior Predictions. (c) Argoverse Ground-Truth with λ=0.00025.

(d) Apolloscape Ground-Truth with λ=0.0005. (e) Argoverse Behavior Predictions. (f) Apolloscape Behavior Predictions.

Fig. 3: Behavior Prediction Results: We classify the three behaviors– overspeeding(blue), neutral(green), and underspeeding(red), for all
road-agents in the Lyft, Argoverse, and Apolloscape datasets, respectively. The y-axis shows θ

′
and the x-axis denotes the road-agents.

We follow the behavior prediction protocol described in Section IV-C. Each figure in the top row represents the ground-truth labels, while
the bottom row shows the predicted labels. In our experiments, we set λ = λ1 = −λ2.

the FDE by up to 70%. This is as expected since stream 1
does not take into account neighbor information. Therefore,
it should also be noted that stream 1 performs poorly in
dense scenarios but rather well in sparse scenarios. This is
evident from Table I where stream 1 outperforms comparison
methods on the sparse NGSIM dataset.

Additionally, Figure 5 shows that in the presence of regu-
larization, the RMSE for our spectrally regularized approach
(“both streams”, purple curve) is much lower than that of
stream 1 (red curve) across the entire prediction window.

RMSE depends on traffic density: The upper bound for
the increase in RMSE error is a function of the density of the
traffic since φ = O(

√
Nδmax), where N is the total number

of agents in the traffic video and δmax = 0.049 meters for
a three-lane wide road system. The NGSIM dataset contains
the sparsest traffic with the lowest value for N and therefore
the RMSE values are lower for the NGSIM (0.40/1.08)
compared to the other three datasets that contain dense urban

traffic.
Comparison with other methods: Our method learns

weight parameters for a spectral regularized LSTM network
(Figure 2), while GRIP learns parameters for a graph-
convolutional network (GCN). We outperform GRIP on the
NGSIM and Apolloscape datasets, while comparisons on the
remaining two datasets are unavailable.

TraPHic and CS-LSTM are similar approaches. Both
methods require convolutions in a heuristic local neighbor-
hood. The size of the neighborhood is specifically adjusted
to the dataset that each method is trained on. We use the
default neighborhood parameters provided in the publicly
available implementations, and apply them to the NGSIM,
Lyft, Argoverse, and Apolloscape datasets. We outperform
both methods on all benchmark datasets.

Lastly, Social-GAN is trained on the scale of pedestrian
trajectories, which differs significantly from the scale of
vehicle trajectories. This is primarily the reason behind



Fig. 4: Qualitative Analysis: We compare the predicted trajectory with the ground truth trajectory (green line with cyan coordinates).
The prediction time is 5 seconds. Each red blob in the figure represents a predicted bi-variate Gaussian distribution, N (µ∗, σ∗, ρ∗). The
prediction is more accurate when the cyan points are closer to the center of the red blobs.

Social-GAN placing last among all methods.
Comparison with other methods: Our method learns

weight parameters for a spectral regularized LSTM network
(Figure 2), while GRIP learns parameters for a graph-
convolutional network (GCN). We outperform GRIP on the
NGSIM and Apolloscape datasets, while comparisons on
the remaining two datasets are unavailable. TraPHic and
CS-LSTM are similar approaches. Both methods require
convolutions in a heuristic local neighborhood. The size of
the neighborhood is specifically adjusted to the dataset that
each method is trained on. We use the default neighborhood
parameters provided in the publicly available implementa-
tions, and apply them to the NGSIM, Lyft, Argoverse, and
Apolloscape datasets. We outperform both methods on all
benchmark datasets. Lastly, Social-GAN is trained on the
scale of pedestrian trajectories, which differs significantly
from the scale of vehicle trajectories. This is primarily the
reason behind Social-GAN placing last among all methods.

D. Long-Term Prediction Analysis

The goal of improved long-term prediction is to achieve a
lower FDE, which can be clearly observed in our results in
Table I. We achieve this goal by successfully upper-bounding
the worst-case maximum FDE that can be obtained. These
upper bounds are a consequence of the theoretical results in
Section V. We denote the worst-case theoretical FDE by T-
FDE. This measure represents the maximum FDE that can
be obtained using Theorem V.1 under fixed assumptions. In
Table II, we compare the T-FDE with the empirical FDE
results obtained in Table I. The T-FDE is computed by
T-FDE = φ

n × (T − τ).
The formula for T-FDE is derived as follows. The error

incurred by all vehicles at a current time-step during spectral
clustering is bounded by φ (Theorem V.1). Since the cluster
centers update the positions for each vehicle in constant time,
the increase in overall RMSE values at each time-step is
bounded by φ as well. The increase in RMSE for a single
agent, therefore, is bounded by φ

n , where n = N
T is the

average number of vehicles per frame in each dataset. T −
τ is the length of the prediction window and n = 10 on
average for the Lyft, Argoverse, and Apolloscape datasets as
indicated by the datasets. We do not have the data needed
to compute φ for the NGSIM dataset as the total number of
lanes are not known.

We note a 73%, 82%, 100% agreement between the the-
oretical FDE and the empirical FDE on the Apolloscape,
Lyft, and Argoverse datasets, respectively. The main cause
for disagreements in the first two datasets is the choice for

TABLE II: Upper Bound Analysis: φ is the upper bound on the
RMSE for all agents at a time-step. T − τ is the length of the
prediction window. T-FDE is the theoretical FDE that should be
achieved by using spectral regularization. E-FDE is the empirical
FDE observed in Table I. The % agreement is the agreement
between the T-FDE and E-FDE computed using T-FDE

E-FDE if T-FDE<E-
FDE, else 100%. Conclusion: Theorem V.1 is empirically verified
with at least 73% guarantee.

Dataset φ (T − τ ) T-FDE E-FDE % Agreement

Lyft Level 5 0.80 30 2.46 2.99 82%
Apolloscape 1.50 10 1.50 2.05 73%
Argoverse 0.64 30 1.95 1.87 100%

Fig. 5: RMSE Curves: We plot the RMSE values for all methods.
The prediction window is 5 seconds corresponding to a frame length
of 50 for the NGSIM dataset.

the value of δmax = 0.049. This value is assumed for a three-
lane wide road system that was observed in majority of the
videos in both datasets. However, it may be the case that
several videos contain one- or two-lane traffic. In such cases,
the values for δmax changes to 0.36 and 0.13, respectively,
thereby increasing the upper bound for increase in RMSE.

Note, in Figure 5, the increase in RMSE for our approach
(purple curve) is much lower than that of other methods,
which is due to the upper bound induced by spectral regu-
larization.

E. Behavior Prediction Results

We follow the behavior prediction algorithm described
in Section IV-C. The values for λ1 and λ2 are based on
the ground truth labels and are hidden from the test set.
We observe a weighted accuracy of 92.96% on the Lyft
dataset, 84.11% on the Argoverse dataset, and 96.72% on the
Apolloscape dataset. In the case of Lyft, Figures 3a and 3b



TABLE III: Ablation experiments of the radius parameter µ. Each
column contains averaged RMSE values over the corresponding
range interval. Conclusion: The optimum results are obtained by
setting 0 < µ ≤ 10 meters.

Dataset µ = 0 0 < µ ≤ 10 10 < µ ≤ 20

Apolloscape 2.14 1.12 2.62
Argoverse 2.40 0.99 3.15
Lyft Level 5 5.77 2.65 3.36
NGSIM 1.31 0.40 2.03

show the ground truth and predictions for Lyft, respectively.
We plot the value of θ

′
on the vertical axis and the road-

agent I.D.s on the horizontal axis. More similarity across the
two plots indicates higher accuracy. For instance, the red (ag-
gressive) and blue (conservative) dotted regions in 3a and 3b
are nearly identical indicating a greater number of correct
classifications. Similar results follow for the Apolloscape and
Argoverse datasets, which we show in the supplementary
material due to lack of space. Due to the lack of diverse
behaviors in the NGSIM dataset, we do not perform behavior
prediction on the NGSIM.

An interesting observation is that road-agents towards the
end of the x-axis appear late in the traffic video while
road-agents at the beginning of the x-axis appear early in
the video. The variation in behavior class labels, therefore,
decreases towards the end of the x-axis. This intuitively
makes sense as θ

′
for a road-agent depends on the number

of distinct neighbors that it observes. This is difficult for
road-agents towards the end of the traffic video.

F. Ablation Study of the Radius Parameter (µ)

We conducted ablation experiments in which we vary the
radius parameter µ (See Section III-B for a discussion on
µ) from 0 to 20. We obtained results on the Apolloscape,
Argoverse, Lyft, and NGSIM datasets which we present in
Table III. We measured the average RMSE values over 3
range intervals: µ = 0, 0 < µ ≤ 10, and 10 < µ ≤ 20. We
use range intervals to clearly and succinctly capture the trend
of the RMSE values for µ > 10 meters and µ < 10 meters.
We observe that the best performance is achieved from the
latter range (0 < µ ≤ 10).

It is clear that setting µ = 0 and thus ignoring neighbor-
hood information in dense traffic severely degrades perfor-
mance. But on the other hand, increasing the radius beyond
10 meters also increases the RMSE error. This is because
by increasing the radius beyond a certain threshold, we
inadvertently include in our spectral clustering algorithm
those road-agents that are too far to interact with the ego-
agent. In order to accommodate these “far-away” road-
agents, the clusters expand and shift the cluster center from
its true center. This phenomenon is common in statistics
where an outlier corrupts the data distribution. The far-
away agents are outliers in the spectral clustering algorithm,
thereby leading to an increase in RMSE. We conclude that
our method produces optimum results for 0 < µ ≤ 10 in
dense traffic systems.

G. Training Details
We use 2 Nvidia GeForce RTX 2080 Ti GPUs with 12GB

memory each, for all experiments. Initially, we trained both
streams together for 20 epochs. However, we observed that
by training stream one first for 20 epochs, and then training
both streams for another 5 epochs generated the results
reported in Table I. All datasets are normalized prior to
training as each dataset is recorded at a different scale.

Stream 1: The input to stream one consists of trajectory
tensors of size B × T × 2, with B = 128 representing
the batch size, T = 3 seconds denoting the length of the
observed trajectory, and 2-dimensional spatial coordinates.
In stream 1, our training converges in 20 epochs in approx-
imately 20 minutes for each data set. The best results from
stream one are obtained by using the RMSprop optimizer
with a learning rate of 0.001.

Stream 2: The input to stream 2 consists of a sequence of
eigenvectors represented as a tensor of size k×B×T ×N ,
where k denotes the number of eigenvectors for each Lapla-
cian matrix, N is the number of road-agents in the traffic-
video. It takes approximately 42 hours per epoch to process
the data for stream 2. Therefore, we pre-compute the input
data for stream two offline, which reduces the training time
to 2.2, 1.5, and 1.2 hours per epoch for Lyft, Argoverse, and
Apolloscape, respectively. The hyper-parameters for stream
2 are identical to those used in stream 1.

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

We present a unified algorithm for trajectory prediction
and behavior prediction of road-agents. We use a two-
stream LSTM network in which the first stream predicts the
trajectories, while the second stream predicts the behavior
of road-agents. We also present a regularization algorithm to
reduce long-term prediction errors.

Our method has some limitations. Currently, we use only
one feature to design our behavior prediction model, which
may not be able to generalize to new traffic scenarios. In
addition, our training is slow and takes several hours due
to the number of computations required for computing the
traffic-graphs and corresponding Laplacian matrices. We plan
to make our behavior prediction model data-driven, rather
than rule-based. We will also explore ways to improve
trajectory prediction using our behavior prediction algorithm.
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VIII. DATA PREPROCESSING

We include all data and code used for data preprocessing
with the supplementary material. Our data structure format
(See Section IX) includes the time-stamp, road-agent ID, and
the road-agent’s spatial coordinates in the world coordinate
frame. The process of obtaining these attributes, and utilizing
them, to construct the data structures differs for all three
datasets – Lyft, Apolloscape, and Argoverse. We converted
the three datasets to one unique representation that includes
frame ID, road-agent ID, X, Y, dataset ID.

A. Metadata

To the best of our knowledge, there is very little known
prior work using these datasets as they are relatively recent.
As such, the raw datasets are not trivial to work with, due to
their large size. In particular, to understand the performance,
and gain interpretability, of an approach on a dataset, it
is essential to study the underlying meta-features of each
dataset. In Table IV, we list some descriptive meta-features
of the datasets. Additionally in this work, we also release
code for efficient implementations for several key operations
such as storage, extraction, querying, addition, and deletion
on these datasets to facilitate future research using these
datasets.

Dataset Batch Avg. Density

Lyft
Train 0.80
Val 0.83
Test 0.84

Argoverse
Train 0.75
Val 0.67
Test 1.67

Apolloscape
Train 3.49
Val 3.50
Test 2.56

TABLE IV: Meta-Feature information for the Lyft Level 5,
Apolloscape, and the Argoverse datasets. The average density is
reported by measuring the average number of road-agents per frame.

IX. DATA STRUCTURES

This section describes the different data structures that are
used in our approach. The implementations of these data
structures are included with the code.

A. Adjacency Matrices

Figure 6 shows a schematic for the data structure used
to create the adjacency matrices for the whole dataset. The
adjacency matrix corresponding to a traffic graph captures
the interactions between all agents within that frame. A
python list is used to store adjacency data of each traffic
video, where each video is again a list of all frames in that
dataset. Each frame is a python dictionary containing the
‘dataset ID’, ‘frame ID’ and ‘adj matrix’. Each adjacency
matrix is an array of size N × N , where N is the total

Fig. 6: Schematic: Data structure for Adjacency matrices.

number of agents in the dataset. The adjacency matrices are
used to form the Laplacian matrices that are updated at every
time-step according to equation 3.

B. Input for Stream 1

Figure 7 shows the schematic for the data structure used to
prepare the input for stream 1. The implementation consists
of a python list of dictionaries. Each dictionary denoted
as item 1, item 2....item n in Figure 7, has three keys-
’dataset ID’, ’agent ID’, and ’sequence’. The value of the
’sequence’ consists of an array of size n × 2, where n is
the length of either the observation sequence or prediction
sequence. Each row of this sequence array consists of the
global X,Y coordinates, respectively, of the road-agent at
that observation or prediction time step.

Fig. 7: Schematic: Data structure for the input to Stream1.

C. Input for Stream 2

Figure 8 shows the schematic for the data structure used
to prepare the input for stream 2. This data structure is
similar to the stream1 data structure in that it also con-
sists of a list of dictionaries. Each dictionary has the keys



‘dataset ID’, ‘agent ID’, ‘mean theta hat’, ‘mean theta’, and
F1, F2, . . . , Fn, where n is the length of the observation
sequence or prediction sequence, respectively. Each Fi rep-
resents the ith frame which is an array of size 2 × N ,
where N denotes the total number of road-agents in that
traffic video. The columns of this array stores the global
X,Y coordinates of all the road-agents at ith frame. The
keys, ‘mean theta hat’ and ‘mean theta’ store information
corresponding to the ground-truth behavior labels for that
sequence of frames.

Fig. 8: Schematic: Data structure for the input to Stream2.

X. MOTIVATION FOR EQUATION 3

Our intuition is that a road-agent should remember the
interactions with not just its current neighbors, but all neigh-
bors it has observed up until current time t. Therefore, the
first term on the RHS stores the information of road-agents
uptil time t, while the second term on the RHS contains the
information of the newly observed road-agents at time t+ 1.

XI. ANALYSIS OF STREAM 2 CONTINUED

In Section 4.2, we presented a behavior prediction algo-
rithm that begins by forming the set of predicted spectrums
from the second stream, U = {UT+1, UT+2, . . . , Ut+τ}. The
success of the algorithm depends on the accuracy of these
predictions, that further depends on the amount of correlation
existing between the sequence of eigenvectors. In Section
4.3, we proved an upper bound for the error distance between
the jth eigenvectors of Lt and Lt+1, denoted as φj . We
showed that φj = O(

√
nδmax), where δmax is the maximum

component of δt.
An alternative approach to computing the spectrums

{UT+1, . . . , UT+τ} is to first form traffic-graphs from the
predicted trajectory given as the output from the stream 1.
Next, obtain the corresponding Laplacian matrices for these
traffic-graphs. Finally, use standard eigenvalue algorithms to
compute the spectrum sequence. This is, however, a relatively
sub-optimal approach as in this case, φ = O(nLmax), with
Lmax � δmax.

XII. ADDITIONAL RELATED WORK

In Section 6, we compared our approach against several
prominent SOTA deep learning-based trajectory prediction

algorithms. However, it is worth noting that there are other
additional methods in the trajectory prediction literature
that we have not considered in this present work. Social-
LSTM [53] is a popular approach for trajectory prediction
of pedestrians in crowds. However, in the interest of clarity,
we provide here an explanation regarding its exclusion from
the experimental setup:
• The official implementation of Social-LSTM has been

recently withdrawn from public access. Therefore, any
results obtained via custom implementations would not
offer an unbiased view of the method compared to prior
works, that have used the official implementation before
its removal.

• Instead of presenting a somewhat biased comparisons
with a well-known pedestrian trajectory prediction
method, we compare with CS-LSTM [8], which is a
slight modification of the Social-LSTM method for
road-agent trajectory prediction.

XIII. TRAINING DETAILS OF COMPARISON METHODS

• TraPHic & CS-LSTM: Implementations of both meth-
ods can be found in [9]. On the Lyft, Argoverse,
and Apolloscape datasets, we use NLL loss and MSE
loss for pretraining and training. We perform a hy-
perparameter grid search with 10-40 epochs of batch
size 64 and 128. We use the adam, adamax, Rprop,
and RMSprop optimizers, with learning rates of 0.01,
0.001, and 0.005, respectively, and dropouts between
0.4−0.6. In TraPHic, we get the best result on Lyft and
Argoverse with the adamax optimizer with a dropout of
0.4 and 0.5, respectively, and on Apolloscape with the
adam optimizer with a dropout of 0.5. In CS-LSTM,
our best result on Lyft is obtained with the adamax
optimizer with a dropout of 0.4, and on Argoverse and
Apolloscape with the adam optimizer with a dropout
of 0.5. However, compared to other methods, these two
methods perform poorly as time increases.

• Social-GAN: We use the standard implementation
in [54]. On each of the three datasets, our hyperpa-
rameter grid search ranges from 1500 − 3000 epochs
of batch size 32, using adam, adamax, Rprop, and
RMSprop optimizers, with a learning rate of 0.001,
0.0001 and 0.0005, respectively, on both generator
and discriminator. We achieve the best result with the
adamax optimizer on Lyft and Argoverse, and adam
optimizer on Apolloscape, all with a learning rate of
0.0005. Due to limited GPU memory, we were not able
to experiment on larger batch sizes. Since Social-GAN
is a pedestrian trajectory prediction approach, we scaled
down the trajectories in all three datasets by a factor of
20 to resemble the trajectories of pedestrians. Even so,
we achieve unstable results during testing.

• Enc-Dec: We implement this method from scratch,
similar to the implementation of stream 1 in our two-
stream network. The key difference is that we train
Enc-Dec with the MSE loss whereas we train our two
stream network with the NLL loss function. We obtain



optimum results for Enc-Dec after 50 epochs with batch
size of 40 and learning rate of 0.001.

• GRIP: We also implement this method following the
approach in [15]. We obtain the best results with batch
size of 128 and learning rate of 0.001.

A. Training Details

We use 2 Nvidia GeForce RTX 2080 Ti GPUs with 12GB
memory each, for all experiments. Initially, we trained both
streams together for 20 epochs. However, we found that by
training stream one first for 20 epochs, and then training both
streams for another five epochs generated the best results,
reported in Table I.

Due to the computations involved in obtaining the Lapla-
cian matrices and their corresponding eigenvectors, data
processing for stream two is both time-consuming and ex-
pensive in terms of computational resources. Consequently,
we choose 6310, 5126, and 5073 valid trajectories to form
the training set, and 769, 1678 and 1012 valid trajectories to
form the testing set for the Lyft, Argoverse and Apolloscape
datasets, respectively. We consider the trajectory for a road-
agent to be valid if that road-agent is present for at least
8 seconds (3 observation + 5 prediction ) in Lyft and
Apolloscape. In Argoverse, we only use the first 2 seconds
as an observed trajectory to predict the next 3 seconds since
each video in Argoverse is limited to 5 seconds.

Stream 1: The input to stream one consists of trajectory
tensors of size B × T × 2, with B = 128 representing
the batch size, T = 3 seconds denoting the length of
the observed trajectory, and 2-dimensional spatial coordi-
nates. In stream 1, our training converges in 20 epochs
in approximately 20 minutes for each data set. The best
results from stream one are obtained by using the RMSprop
optimizer [56] with a learning rate of 0.001.

Stream 2: The input to stream 2 consists of a sequence of
eigenvectors represented as a tensor of size k×B×T ×N ,
where k denotes the number of eigenvectors for each Lapla-
cian matrix, N is the number of road-agents in the traffic-
video. It takes approximately 42 hours per epoch to process
the data for stream 2. Therefore, we pre-compute the input
data for stream two offline, which reduces the training time
to 2.2, 1.5, and 1.2 hours per epoch for Lyft, Argoverse, and
Apolloscape, respectively. The hyper-parameters for stream
2 are identical to those used in stream 1.
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